学术运动
化学系学术报告:Automated Generation of Reaction Paths
2024-03-27
点击次数:尊龙凯时
时间:2024-03-11
所在:新教二楼209
主持人:吉琳
主讲人:朱通 华东师范大学化学与分子工程学院/上海纽约大学物理系教授,北京科学智能研究院(AISI)成员。2022年获得国家优异青年基金资助。2013年博士结业于细密光谱科学与手艺国家重点实验室。2016至2018年,台湾“中研院”会见学者。主要研究偏向是理论和盘算化学。主要生长机械学习、量子化学和分子动力学模拟算法研究重大系统的化学反应动力学问题,包括金属离子与卵白质/核酸之间的相互作用以及燃烧等重大化学系统的反应机理等。近五年来,在Nat. Mach. Intell.、Nat. Commun.、Nucleic Acids Res.、J. Chem. Theory Comput等期刊上揭晓论文70余篇。他的文章被引用凌驾1500次。
内容简介:Aviation fuel is a complex mixture with extremely complicated thermal decomposition and combustion reaction pathways. It is difficult to systematically understand the combustion mechanisms of complex kerosene fuels relying solely on current experimental methods and computational techniques. Guessing and providing all possible reaction pathways manually is difficult to achieve, and calculating each reaction pathway using quantum chemistry methods is even more impractical. Driven by the goals of carbon peak and carbon neutrality, people are constantly exploring new low-carbon and zero-carbon fuels, which puts forward a more urgent demand for the efficient construction of high-precision combustion mechanisms. Here we report some recent progress we have made in this direction. By fully integrating machine learning and physical models, we have achieved rapid searching of combustion reaction pathways and fast prediction of rate constants. The introduction of machine learning methods ensures the efficiency of the method, while the physical model fully guarantees its accuracy and extrapolation capability. The development of this method is expected to provide more reliable and efficient tools for the rapid construction of combustion reaction mechanisms.